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A NONCONFORMING MULTIGRID METHOD 
FOR THE STATIONARY STOKES EQUATIONS 

SUSANNE C. BRENNER 

ABSTRACT. An optimal-order W-cycle multigrid method for solving the sta- 
tionary Stokes equations is developed, using P1 nonconforming divergence-free 
finite elements. 

1. INTRODUCTION 
2 

Let Q be a bounded convex polygonal domain in IR . The stationary Stokes 
equations for an incompressible viscous fluid are given by 

-Au + gradp = f in Q, 
(1.1) divu=O inQ, 

u=O on0Q. 

Here the viscosity constant is taken to be 1, p is the pressure, u = (ul, u2) is 
the velocity of the fluid, and f = (fi, f2) denotes the body force. In this paper, 
vectors are always represented by boldfaced letters. We assume f E (L 2(Q))2. 
There exist a unique solution (u, p) E ((Ho (Q)) n (H2 (Q)) 2) x (H1 (Q)/IR) of 
(1.1 ) and a positive constant CQ such that 

(1.2) 11U11(H2(Q))2 + IPI?'(0) < CIf(I(L 2(o))2 

(cf. [1 1, 13]). 
In this paper we will use the following notation for the Sobolev norms and 

seminorms: 
/ ~~~~~~1/2 

IIVII(H-(n)) 2 :=( 0aV12 dx) 

and 

IVI(H (n)) 2 :=(1 0aV12 dx) 
lai=m 

Similar notation is also used for scalar functions. 
Received March 24, 1989. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65N30, 65F10. 
Key words and phrases. Nonconforming multigrid method, stationary Stokes equations. 
This work was supported in part by the National Science Foundation under Grant No. DMS- 

8904911. 

i 1990 American Mathematical Society 
0025-5718/90 $1.00+ $.25 per page 

41 1 



412 S. C. BRENNER 

A weak form of (1.1) is to find a divergence-free u in (Ho (Q))2 such that 

(1.3) a(u, v) + gradp * v = f * vdx Vv E (H (Q))2, 

where 

(1.4) a(v, , V2) = VV1 Vv2 dx, 

and Vv* Vv2 = Ei= I Vvi*Vv2i for v1 = (vI 1, 1 ,v2) and V2 = (V2,1 5 V2, 2) 

in (H'(Q))2. 

Let V = {v: v e (H'(Q))2, divv = 0}. If we restrict (1.3) to V, the pressure 
term disappears and the problem becomes to find u E V such that 

(1.5) a(u,v)=ff.vdx VvcV. 

The velocity u can be characterized as the unique solution of (1.5) (cf. [10]). 
In order to apply the Ritz-Galerkin method to equation (1.5), we introduce 

a family of triangulations of Q: {f }k'l, where 79k+1 is obtained by con- 
necting the midpoints of the edges of the triangles in 5k. We will denote 
max{diamT: TECfk} by hk. 

k~~~~~~~~~~~ The finite element spaces Vk are defined as follows: 

Vk := {VNT is linear and divergence-free for all T c 7k 

(1.6) v is continuous at the midpoints of interelement boundaries, 

and v = 0 at the midpoints of S7k along oQ}. 

Note that Vk is nonconforming because Vk ? V. 
On Vk + V we define the following positive definite symmetric bilinear form, 

(1.7) ak(V V2) := E f Vv1 *Vv2dx, 
TE~crk 

and its associated nonconforming energy norm 

(1.8) 11V11k := ak(V, V) 

The discretized problem for (1.5) is to find uk e Vk such that 

(1.9) ak(uk v)=Jf vdx VvGJ vk. 

It is proved in [10] that there exists a positive constant C such that 

(1.10) Ilu - UkII(L2())2 + hkllU 
- 

Uk Ilk 
? 

ChN(IuI(H2(H))2 + IPIH'(Q))- 

Throughout this paper, C (with or without subscripts) denotes a positive 
constant independent of the mesh parameter k. 
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We will develop an optimal-order multigrid method for (1.9). Let nk be 
the dimension of Vk . Our full multigrid algorithm will yield an approximate 
solution uk to (1.9) in 6(nk) steps such that 

( 1.1 1 ) auk ukL2(n))2 + hk <ukk ? Ch (2 u(H2(n))2 + 

For background information on multigrid methods, we refer the reader to [12, 
14] and the references therein. 

The crucial part in the development of a nonconforming multigrid method 
is the correct choice of an intergrid transfer operator Ikk-1 VkJl Vk . (Since 
Vkl ? Vk, natural injection no longer works.) The intergrid transfer operator 
we use is defined by averaging and has the following three properties: 

(1.12) HIklVlk ? Clvl1 Vv E/-1 

(1.13) HII1kv V- (L2(n))2 < Chk|v|kl Vv E JK~l, 

and 

( 1 . 14 ) HIIl(Ik _Ig) - g||(L2(n))2 + h< 1k lg) -nk gilk 
2 2 2 1 2 < Chklgl(H2())2 Vg e (H (Q)) n (H2(Q)) 

where I71k denotes an interpolation operator from V onto Vk (cf. ?2). These 
three estimates will play an important role in our convergence analysis. Analo- 
gous estimates have been used for other nonconforming finite elements (cf. [7, 
8]). We also refer the interested reader to other related results in nonconforming 
and nonnested multigrid methods in [3, 5, 18]. 

This paper is organized as follows. We review some facts about the finite 
element space Vk in ?2. In ?3 we define the intergrid transfer operator and 
prove the three estimates (1.12)-(1.14). The multigrid algorithm is described 
in ?4. In ?5 we discuss the mesh-dependent norms, which is followed by the 
convergence analysis in ?6. 

2. THE DIVERGENCE-FREE P1 NONCONFORMING FINITE ELEMENT SPACE 

Let P be a simply connected polygonal domain and 9 be a triangulation 
of P . Denote max{diam T: T E '7} by h . Let 

W {w E (L 2(Q))2: WIT is linear and divergence-free for all T E A, 

(2.1) w is continuous at the midpoints 
of interelement boundaries, and 
w = 0 at the midpoints of 9 along aP}. 

We will describe a basis of W. First we make an observation on the diver- 
gence-free condition. Let w be a linear function on a triangle T with midpoints 
mi1, M2, and m3 on edges e1, e2, and e3 (cf. Figure 1). 
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FIGURE 1 

Then 

divw =O X divwdx = O 

(2.2) 3 

X 
| n nds = 0 O J:(w(mi) ni) lei I= 

AT i=1 

where ni denotes the outer normal to edge e,. 
Let e be an edge in S. Denote by Oe the piecewise linear function on P 

that takes the value 1 at the midpoint of the edge e and 0 at all other midpoints. 
The first kind of basis functions are associated with internal edges. Let we := 

(Oete, where e is an internal edge and te is a unit vector tangential to e. Then 
it follows from (2.2) that we E W. 

The second kind of basis functions are associated with internal vertices. Let 
p be an internal vertex and let e1, e2, ..., el be the edges in 7 that have p 
as an endpoint. Let wp: E l~ eil lI> n , where ne is a unit vector normal 
to e. pointing in the counterclockwise direction (cf. Figure 2). It again follows 
from (2.2) that w E W. 

FIGURE 2 
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The proof of the following lemma can be found in Appendix 3 of [17]. 

Lemma 1. The set of vector functions {We: e is an internal edge of iW} U 
{w : p is an internal vertex of S} is a basis of W. In particular, 

(2.3) dimW=e +v, 

where e' denotes the number of internal edges and v' denotes the number of 
internal vertices. 

We can apply (2.3) to derive an exact formula for the dimension nk of the 
finite element space Vk in (1.6). Let eL be the number of internal edges in 
Sk .Denote by fk the number of triangles in SFk . Then ek and 4 satisfy 
the difference equations 

(2.4) ek = 2ekl + 3fk-l' 4k = 4fk-i: 

Equation (2.3) and Euler's formula imply that 

(2.5) nk =2ek fk+l . 

If we solve (2.4) and substitute the solution into (2.5), we obtain 

(2.6) nk = 2 (el -fi)+24 + 1. 

Therefore, asymptotically, 
k-i 

(2.7) nk 2fi4 

Henceforth, we will use the following set of vector functions as the standard 
basis for JkK: 

(2.8) {Vk: e is an internal edge of S-k} U {vk: p is an internal vertex of 9k} 

Let Z:= {z E (L 2(Q))2: ZIT is linear for all T E S', z is continuous at the 
midpoints of interelement boundaries, and z = 0 at the midpoints of OP}. 

The interpolation operator LI: (H 2(P))2 n (H'(P))2 -- Z is defined by (cf. 
[10]) 

(2.9) Ig E Z and IjIgds= gds for all edges e e 7. 

More explicitly, we have 

(2.10) Ig(me)=T I gds, 

where me is the midpoint of the edge e. 
The following lemma is proved in [10]. 

Lemma 2. Let g E (H2 (P))2 n (H1 (P))2. Then 

(2.11) fdiv(gl7I T)dx = divgdx VTcE, 
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and there exists a positive constant C which depends only on the angles of the 
triangles in 9 such that 

1/2 

(2.12) wgni(2(p))2 
+ h (EIg _ I(Hg(2 )2) < Ch 2 

2 H(p))2. 

TEk 

As a corollary to Lemma 2, Fl: {g: g E (H 2(P))2 n (H (P))2 and divg = 

0} -- W. If we apply this result to Q, V, and Vk, there exists a sequence of 
interpolation operators ilk: V -+ Vk such that 

(2.13) - 
Fkg(L2(Q))2 + hjlg-FIg|| < Ch2g (22())2. 

3. THE INTERGRID TRANSFER OPERATOR k 

In [6, 8], we described the construction of an intergrid transfer operator for 
the scalar PI nonconforming finite element. The construction here is similar, 
except that special care must be taken to preserve the divergence-free condition. 

Let v E Vk- I I To define the piecewise linear vector function 1k V it suffices 
k ~~~~~k- to specify its values at the midpoints of Sk. If mc EQ, then (Ikv)(m) = . 

If m lies in the interior of Q, then there are two cases to consider. For a 
midpoint m of S9k that lies on the common edge of two triangles T, and T2 
of S'k- (e.g., mi, .. ., m6 in Figure 3), we define 

(Ik-v)(m) := '[vI T (m) + VIT2 (m)] 

If a midpoint m lies in the interior of a triangle T in Sk - (e.g., m7, m8, 

and m9 in Figure 3), then the tangential component of (Ikk v)(i) is the same 
as the tangential component of v(m), and the normal component will be deter- 

mined by the condition that div(Ikk 1v) = 0 on the three outer triangles in the 
subdivision of T. In other words, if we denote by ei the edge in Figure 3 that 

has mi as its midpoint, then (I k v)(m) ni , i = 7, 8, 9, are determined by 
the following equations: 

E (<vk V)(m1) * nileil 0, 

i=6, 1,7 

(3.1) E (Ik~v(i * I V) (M? 
i=2,3,8 

E (IklV)(mk ) * nileil 0. 

i=4,5,9 

Proposition 1. The intergrid transfer operator Ikj~ maps Vk~ into Jk, i.e., 

(3.2) IklVE k VV E 1* 
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FIGURE 3 

Proof. It suffices to check the divergence-free condition on ADEF in Figure 
3. (By construction, div(< kv) = 0 on AADF, ADBE, and AFE C.) 

\/ 1t .* I7 \ 

Let w = v . Since t dv s ,we thav 

(3.5) E w~mi)i- nilEi I=23,8 

i=4,5,9 i=7,8, 

yI subaing the last equation (3.5) followsfromntheisu of thee equations 

6 

(3.6) ( n(mt) n ni leiI = 0. 

Let he = r Iefoe it s u e w to show that 

6 6 

E ((mi) w ni leim I , = V(mi) m nileiI = i, 
(3.5) i=1,6,7 i-i2,3,8 

1: V'(mj) *njleil =0 1, i (mj) * ni lei I = 0. 
i=4,5,9 i=7,8,9 

By subtracting the last equation in (3.5) from the sum of the first three equations, 
we have 

6 

(3.6) V^(mi) * nileil = ?- 

Therefore, it suffices to show that 
6 6 

(3.7) W(Mi) * ni leil I E (mi) * ili1 
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Let v = vi AABP. By the definition of the intergrid transfer operator, 

(3.8) w(m2) = 2[i(mi) + i(m1)] 
= i(m) + ,[ (mm) - i(mj)], i = 1, 2. 

The function g = (v - v) * n, where n = n1 = n2, is a linear function along AB 
which vanishes at the midpoint D. Therefore, 

(3.9) g(m1) + g(m2) = O. 

Combining (3.8) and (3.9), we have 
2 2 

Zw(md) *n1 = Ei(mi) *ni 
i=1 1=1 

Similarly, 
4 4 

E w(mi) ni = ZiV(mi) *ni 
i=3 i=3 

and 
6 6 

E: w(mi) * ni =: E (mi) * nil 
i'=5 i=5 

It is obvious that Ik 1: J/ 1 V Jk is a linear operator. The following propo- 
sition will be useful in the work estimate of the full multigrid algorithm. 

Proposition 2. The matrix representing 'k-i with respect to the standard bases 
of Vk_j and Vk (cf. (2.8)) is sparse, with the number of nonzero entries per 
row bounded by 9. 

Proof. First we look at the effect of Ik_-, on basis functions in $- 1 that are 

associated with internal edges. Let e = AC be an internal edge of S7k 
I (cf. 

Figure 4) and Vek-1 be the basis function in Vkj associated with e. Denote 
by P the simply connected polygonal domain AFBGCHDE. By definition, 

'ki Vk- is supported on P and vanishes at the midpoints of Sk along OP. 

It follows from Lemma 1 and the definition of Ij- that I-_jv,1 is a lin- 

ear combination of Vek, where e ranges over all edges of Sk in the domain 
k 

ABCD, and Vkp 1 < i < 5. In the case that one or more of the edges AB, 
BC, CD, or DA are along OQ, the results are similar. 

We now examine the effect of k-1 on basis functions in V- that are 

associated with internal vertices. Let p be a vertex in Sk -1 and Vk- be the 
basis function on Vkj associated with p. We assume that there are, say, five 

edges in Sk 
I that have p as a vertex (cf. Figure 5). Denote by P the simply 

connected polygonal domain AGBHCIDJEF. From the definition of Ik- 

the function I/k 1Vp is supported in P and vanishes at the midpoints of Sk 
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A XA , iC 

B 

FIGURE 4 

along OP. Therefore, Lemma 1 and the definition of 'ki imply that IkklV- 

is a linear combination of vk, Vk i = 1, ... , 10, and Vek, where e ranges 

over all edges of Sk in the domain ABCDE. Again, the results are similar if 
one or more of the edges AB, BC, CD, DE, or EA are along OQ. 

The proposition now follows from the two observations above. 0 

The rest of this section is devoted to the proofs of (1.12)-(1.14). 
We first give more explicit descriptions of 11 IIL2 and I 'H' for piecewise 

linear vector functions on a triangle. Let T be a triangle and v be a piecewise 
linear vector function on T. We have the quadrature formula 

(3.10) IIVII(L2(T))2 = I 3 I IV(m )l 12 

where the mi are the midpoints of the sides of T for i = 1, 2, 3 (cf. [9, p. 
183]). Also, by a standard homogeneity argument, there exist constants C1, C2 

which depend only on the angles in T, such that 

(3.11) C9(V) < IVIH (T))2 <C2(V), 

where 
2 2 ~~~~~~~~~~~~2 

(3.12) @(V) = [V(ml) - V(m2)]2 + [v(m2) - V(m3)]2 + [V(m3) - V(mI)] 

The following two lemmas prepare the way for the proofs of (1.12) and (1.1 3). 
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FIGURE 6 

Lemma 3. Let G be the union of two neighboring triangles T1 and T2. Let p3 

be the midpoint of PIP2 and m be the midpoint of plp3 (cf Figure 6). Let 
Z := {w: WIT is linear for i = 1, 2 and w is continuous at p3} . Then there 
exists a positive constant C depending only on the angles of T1 and T2 such 
that 

(3. 1 3) WI T1 (m) - WI Tl (m) < C(IWI (H' (T))2 + IWI(H (T))2) 

for all w E Z. 
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P2 

Pi 

FIGURE 7 

Proof. Given w E Z, let w1 = WIT and w2 = WIT . Let t be a unit vector in 
the direction P3p, . Then we have 

IwI(m) - w2(m)I = Iw1(m) - W1(P3) + W2(p3) - w2(m)I 

< Iwl m) - W1(p3)I + 1W2(P3) - w2(m)I 

aw ___ w2 1f 
- t' 1 

|31 1+ at Imp31 

<C[IWI(Hl(T))2 + IWI(H1 (T2))2 ] 

The next lemma is proved similarly. 

Lemma 4. Let T be a triangle. Let P3 be the midpoint of PAp2 and m be the 
midpoint of p`p3 (cf. Figure 7). Let Z = {w: w is linear and w = 0 at P3}. 
Then there exists a positive constant C depending only on the angles in T such 
that 

(3.14) IW(M)I ? CIWI(H1(T))2. 

Theorem 1. There exists a positive constant C such that for all v E Vk- 1 

|iki~-VI|k ' CIIVIlk-1 

and 

IIIk_ v- VII(L2(2))2 < ChkIlvIl, 

i.e., (1.12) and (1.13) hold. 

Proof. Given v E Vk-I , we can write 

3 

Z (I 1V-vIT)(md)I = 1 + 52 + S31 
TEgfk i= 1 

where S1, S2, and S3 are defined as follows: 

S1 = ki( 
k 

V- VI1^)(m)I + I(k V- vIjT)(m)I 2, 

m 
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where m ranges over all the midpoints in 79k that belong to an internal edge 
in g-k I and fl, T2 I-k-1 are the two triangles that contain m; 

S2 = E I(2Iv - VI-)(m)I2, 
m 

k E7kl where m ranges over all midpoints of 79 along OQ and T e S9 1 is the 
triangle that contains m; and 

S3= 2 E |( (k- Vvj- ) (m) * nm 2 

m 

where m ranges over all the midpoints in '9k that are inside some triangle 
T 19Sk 1 and nm is a unit vector normal to the edge containing m. 

Lemmas 3 and 4 and the definition of Ik imply that Sl + S2 < CIIvII21. 
On the other hand, S3 can be estimated in terms of S, and S2. Referring back 

-kl to Figure 3, let m7 be a typical midpoint in S3 and T = AABC E S9 - . Since 
v and 'k- v are both divergence-free on AADF, (2.2) implies that 

((,lV - VIW)(m7) *n7)DFI = -((Ijv - vI)(m6) * n6)|AF 

- ((iv - vI-)(ml). nI)IADI. 

Hence, 

(ik V- vI)(m7) 2n~I < C{i4kV- vI2(m6)I + I2k V- VIiT(mM) 2}- 

Therefore, S3 < C(S1 + S2), and we have 

3 

(3.15) S Z(< V iv-vIT)(mi)I2 ? CIlvII 
TE fk i=l 

From (3.1 1) and (3.15), 

IIIk 2VIk = S IIk 2VIH1(T) < C E e((I kV)IT) 
TE fk TE fk 

< C e@(VIT) + e((IIV)IT VIT) 

LTEgk TE fk 

3 
? c| + Te~ E I(<i lV-2vImi <2 C<CVI 

Ticme t pr Tek ir=l 

This completes the proof of the first inequality. 
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From (3.10) and (3.15), we have 

IIk-lV-V(L2(Q))2 = W -1 VI(L2(T))2 
TEgfk 

3 

< Ck K k(ik lVVIT)(Mi)l 
Teffk i=1 

< Chk l~k_ 1. 

Corollary 1. There exists a positive constant C such that 

(3.16) !k 1VII(L2(Q))2 ? CIIVII(L2(0))2 Vv EVk_1. 
Proof. From Theorem 1 and a standard inverse estimate (cf. [9, p. 140]), we 
have 

(L2(Ql))2 
< 

II~k iV-Vjf(L2(())2 + IIVII(L2(Q))2 

< Chk|IV|fk-1 + 1fVII(L2(2))2 < CIIVII(L2(Q))2. 0 

Inequality (1.14) will be proved by a homogeneity argument. We will there- 
fore first prove some estimates on reference domains. 

Lemma 5. Let G be the union of two neighboring triangles T1 and T2 such that 
diam G = 1. Let mi (1 < i < 5) be the midpoints of the edges ej (1 < i < 5) 
of T1 and T2 and let mn be the midpoint ofe=pImM (cf. Figure 8). Then 

P2 

\~~~M T2 \ 

m3 \ 4 

PI 

FIGURE 8 
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there exists a positive constant C depending only on the angles in T1 and T2 
such that 

hds 11 hds - 1 hds 

(3.17) IleIIej 41e31je 4 le2lje 

+ ~ hds - hds - hd _ 
ll2) 4 ]e5h d jhds h I C l (H2(G))2 

for all he (H 2(G))2. 

Proof. It suffices to prove (3.17) for scalar functions in H 2(G) . Define a linear 
functional I on H 2(G) by 

(3.18) 40 =ds+ 4 Ids 4 e Ie d 

+4 Le " 4le51 j 1ds lejlrds. 

Observe that if g E p1 (G) (i.e., g is linear), then l(g) = I(m1) + 41(m3) - 

4 ,(m2) + 4' (m4) - 4 (m) - I(M) = 0. 
By the trace theorem (cf. [1, p. 1 4]), for any g E Y1 (G), 

Il(W)l = 1(4 + g)l < CIII + gIIH2(G). 

Therefore, by the Bramble-Hilbert lemma (cf. [4]), 

11(j)l < C inf III + gIIH2(G) < CIJIH2(G) 0 
gE6, (G) 

The proof of the next lemma is similar. 

Lemma 6. Let G be a triangle such that diam G = 1. Let mi (1 < i < 3) be 
the midpoints of edges ej (1 < i < 3) of G and e = m2m3. Then there exists 
a positive constant C depending only on the angles in G such that 

hf hds +.j f hds ~~h ds 
(3.19) 2 le2l le 

2 
2 3e3 3 lel Je 

< Clhl(H2(G))2 Vh E (H 2(G))2. 

Finally, we are ready to prove inequality (1.14). 

Theorem 2. There exists a positive constant C such that 

IW-l(rnk-9g) - Hkgllk ? Chklgl(H2(Q))2 

and 

IiI4I(Hk-1g ) - kgII(L2(2))2 < Chklgl(H2() )2 Vg E (H (Q)) n (H (Q)). 
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Proof. From (3.1 1), 

1(n~k-1)- Hkgl = E IIk 1(nk-1g) - kgl(H1(T))2 
TE9fk 

< C E 0(( k-1(kl. k~T 
TEgfk 

3 

< C E II-l(H-g.) - HgI2(mi), 

TE97k i=I 

where the mi are the midpoints of T. 
We can write 

3 

Z II- (k-H Ig) -kHg (m) = S + S2 + S3, 
TE fk i= 1 

where SI' S2, and S3 are defined as follows: 

= E a(m) II l (H I g) -(Hg (i ), 
m 

where m ranges over all the midpoints in 7k that belong to an edge in k- 1i 

a(m) = 1 if m E O , otherwise a(m) = 2; 

S2 2 [(I (r1k-Ig)-IHkg)(m) *tm]1 
m 

where m ranges over all the midpoints in '7k that are inside some triangle 
in ki and tm is a unit vector tangential to the edge that contains m as its 
midpoint; and 

S3= 2E[(Ik k( nkm2g)- Hkg)(m) nmI2' 
m 

where m ranges over all the midpoints in '7k that are inside some triangle in 
7k- and nm is a unit vector normal to the edge containing m . 

The definition of Iki' Lemma 5, and a homogeneity argument imply that 

SI < Ch lgl2H2 ())2. Similarly, S2 < Ch Ilgl2H2(2))2 follows from the definition 
of 1k , Lemma 6, and a homogeneity argument. On the other hand, S3 < 

CS1 by the divergence-free condition. Therefore, we have established the first 
inequality. 

The second inequality follows from the observation that (3.10) implies 

3 

I- II(rk-g) - rkglI(L2(Q))2 < k I'kI (rkg) - rkgl (m) 
TE5k i= I 

<Chk (S1 + S2 + S3). 0 
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4. THE MULTIGRID ALGORITHM 

Given v E Vk, we can write v - Zaivk + E bjvp , where the e1 ranges over 

all internal edges of Sk and pj ranges over all internal vertices of Sk (cf. 
(2.8)). The inner product (' )k on Vk is defined by 

(4.1) (v, vk :=h E al, a2 + h E bl b2,j 

where vI=Z al iVe + E bljVp and v2 = a2 iv e + E b2, jVPbelong to Vk . 

Using the quadrature formula (3.10), it is easy to see that 

(4.2) (v, v)(L2(n))2 < Chk 2(v, V)k Vv E 

The fine-to-coarse intergrid transfer operator 1k-I 1: J - k l is defined by 

(4.3) (Ik-lIV 5W)k = (V Ik W)k-I eVVE Vk- 15W E Vk. 
The symmetric positive definite operator Ak: Vk 

-- 
Vk is defined by 

(4.4) (Akv, w)k = ak(v,w) VvwEJVk, 
where ak (., *) is defined in (1.7). 

Remark 1. With respect to the standard basis, Ak is represented by a sparse 
matrix. The number of nonzero entries per row is bounded by max(6, N), 
where N represents the maximum number of edges in 71 that have a common 
vertex inside n. 

By a standard inverse estimate (cf. [9, p. 140]), 

(4.5) ak(v, v) < Chk (v, v)(L2())2 Vv E Vk 
Then (4.2) and (4.5) imply that the largest eigenvalue of Ak is bounded by 

(4.6) Ak := Chk 
4 

The W-cycle multigrid algorithm can now be described. We first describe 
the kth-level iteration scheme. The full multigrid algorithm consists of a nested 
iteration of these schemes. 

The kth-level iteration. The kth-level iteration with initial guess zo yields 
MG(k, zo, g) as an approximate solution to the equation 

Akz = g. 

For k = 1, MG(1, z0, g) is the solution obtained from a direct method. In 
other words, 

MG(1, zo, g) = A1g. 
For k > 1 , there are two steps: 

Smoothing step. Let z1 E Vk (1 < I < m) be defined recursively by the equa- 
tions 

(4.7) Z/ = Zl- (g - A Z,_z), < I< m, 
k m 

where m is a positive integer independent of k. 
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Correction step. Let :=I-1 (g - Akz). Let qj E VkI (O < i < pp=2 or 
3) be defined recursively by 

q= 0 

and 

qj = MG(k - 1, q 1,g), 1< p. 

Then MG(k, zo, g) is defined to be Zm + II qp 

The full multigrid algorithm. In the case k = 1, the approximate solution ul 
of (1.9) is obtained by a direct method. The approximate solutions uk (k > 2) 
of (1.9) are obtained recursively from 

k k 
U0 =Ik-1Uk-1 

u1 =MG(k , uI- _1 fk), 1 5 

(fk V)k fvdx Vv E Vk, 

and 

k 
Uk = U, 

where r is a positive integer independent of k. 

Remark 2. By Proposition 2 and Remark 1, relative to the standard basis of 
k k-l 

Vk, the operators Ik 1 'I -l , and Ak are represented by matrices with &(nk) 
nonzero entries. Along with the asymptotic formula (2.7) and the fact that the 
number of corrections p is less than four in the kth-level iteration, the total 
work of the full multigrid algorithm is therefore &(nk). The proof is the same 
as the one in [2]. 

5. MESH-DEPENDENT NORMS 

The mesh-dependent norm I Ill, k on Vk is defined by 

(5.1) 2IlVIIIk: (As'2V, v)k. 

Therefore, 

I IIIIIo Ic k (V, V)k and IIIVIII2 = /(Av, v) = /ak(V, v) = IIik 

From definition (5.1), it is easy to deduce the following inequality: 

(5.2) Iak(V, W)I < 111V1112t,kc111W1112-t,kI 

The rest of this section will be devoted to the proof of the following propo- 
sition, which is needed for the proof of the approximation property in ?6. 
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Proposition 3. We have IIIVI IIk < CIIVII(L2(j2))2 

The proof of this proposition is based on the relationship between the diver- 
gence-free PI nonconforming space and the Morley finite element space (cf. 
[15]). Let Mk be the Morley finite element space associated with S7k . Then 
q E Mk if and only if it has the following three properties: 

(i) IT is quadratic for all T e k, 
(ii) 0 is continuous at the vertices and vanishes at the vertices along On, 

and 
(iii) 00/0n is continuous at the midpoints of interelement boundaries and 

vanishes at the midpoints along OQ. 

The Morley finite element space can be used to construct a nonconforming 
multigrid method for the biharmonic equation (cf. [7, 16]), which is closely 
related to the stationary Stokes equations (cf. [9, p. 280]). We can define two 
mesh-dependent inner products on Mk. 

For q and qi in Mk, 

(5.3) bk(, q) $D0: D 2idx, 

where 

X Dv: E. Ox Oxi - xxiaxj 
and 

(5.4) (q$ X)k 2h [E(p) (p) + h 
2 

(m) (M) 
P m 

where p ranges over all internal vertices and m ranges over all internal mid- 
points of Sk. 

Let Bk: Mk -+ Mk be a symmetric positive definite operator defined by 

(5.5) (B kO I V)k := bk(O' /)' 

We can define the mesh-dependent norms I IiI I Il , k on Mk by 

(5.6) 2lllil k= (Bsl0 o ) 

Given 0 E Mk, we denote by 0 the continuous piecewise linear function 
that has the same value as 0 at the vertices of gjk. The following lemma is 
proved in Proposition 8.1 of [16]. 

Lemma 7. For any 0 E Mk, we have 

(5.7) 1IIIIIII1 ,k < C(OO IH (Q) + hk I I Ik12, k)2 
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There is an isomorphism between Mk and Vk given by the operator curl, 
where 

(5.8) (curlq0)I= (f,9x2 'X) 
VT E 

More explicitly, if curl k is represented in terms of the standard basis of Vk, 
say curl 0 = E vk + E bvk , then 

(5.9) ai=+n(Md 

and 

(5.10) b = 0(pj 

where mi is the midpoint of edge ei and the sign in (5.9) depends on the choice 
of te and ne 

It follows from (4.1), (5.4), (5.9), and (5.10) that 

(5.11) (/ X V/)k = (curlh, curl V/)k* 

An easy computation also shows that 

(5.12) ak (curl 0, curl V/) = bk V( ' ) 

It therefore follows from (5.11), (5.12), and the definition of the mesh-depen- 
dent norms that 

(5.13) II1curl011Isk = IIIIq$11s,k. 
Let curl 0 = v = E aive + E bvpv . The quadrature formula (3.10), (5.10), 

the definition of vp , and a straightforward computation show that there exist 
positive constants C1, C2, C3, and C4 such that 

(5.14) Cl Z[(P) -_p )I ? ki2 IHI(2)< C2) 2(P)-0(P)] 
and 

(5.15) C3 E[(P) -_ (P )] <| (L2( ))2< C4 E[q(P) -_ (P )] 

where p and p' range over any two vertices of any triangle in 8Sk. 

Proof of Proposition 3. Given v = >j aive + A bjvp , there exists a unique 0 E 
Mk such that v = curl0. In view of (5.13), (5.14), and (5.15), the inequality 
(5.7) is translated into 

(5.16) IIIvIIIl k < C Zbjvp (L2(n))2 + 1IV1112 k) 

From the inverse estimate (4.5), 



430 S. C. BRENNER 

From the definitions of ve, vp, and the polarized form of the quadrature 
formula (3.10), we have (Zaive, bJvp )(L2(0))2 = 0. Therefore, 

(5.18) Ebjv,(2Q) 2||(j2())2. 

6. CONVERGENCE ANALYSIS 

We will first discuss the convergence of the kth-level iteration and then the 
convergence of the full multigrid algorithm. Following [2], we will use a pertur- 
bation argument for the convergence proof of the kth-level iteration. In other 
words, we begin with a two-grid analysis. 

Define the operator Pr'- ' Vk - Vk_l by 

(6.1) ~k 
)k-i (6.1) ak(V Iklw) =ak-l(Pk V, ) VVe Vk, WE Vk-1. 

In other words, pk- is the adjoint operator of 1k 1 relative to the inner prod- 
ucts that define the energy norms on Vk and Vk_- . Therefore, the following 
lemma is a direct consequence of (1.12). 

Lemma 8. There exists a positive constant C such that 

(6.2) IlPk Vk-1 < CIIVIIk VV C Vk. 

In the two-grid algorithm, we assume that the residual equation is solved ex- 
actly on the coarser grid. The final output of the kth-level iteration is therefore 
Zm +Ikq, where 

q = Ak-l9 = 
Ak- (I' (g - 

AkZm)) 
= Ak-1(j Ak(Zzm))- 

We denote the final error z - (Zm + 4k q) of the two-grid algorithm by e and 
the intermediate errors z - zi by ei, for i = 0, 1 . .., m . 

Lemma 9. We have q = Pk-e. 

Proof. Given any w E Vkl, 

ak-I(q, W) = 
(Ak-lq, W)k-1 = (IJ Akem W)k-I = (Akem 5Ik-lW)k 

k k-i = ak(em, Iklw) = akl(Pk em, w). a 

From the smoothing step (4.7), we obtain 

(6.3) eI =Rkell, = 1, 2, ..., m, 

where the relaxation operator Rk is defined by 

(6.4) R =I-I A 
k 
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Since Ak dominates the largest eigenvalues of Ak, it is obvious that II IRkvI I I,, k 

< IIIVIIsk for all v e Vk . Lemma 9 and (6.3) imply that 

k k k-i 

(6.5) Mem 
k k-i k1m 

=(I-Ik-_Pk )em = (I-I1_,P1 )Rkeo. 

The two-grid analysis will be complete once we estimate I - 'k-i lk-1 (the 

approximation property) and Rm (the smoothing property). 

Lemma 10 (Smoothing property). There exists a positive constant C such that 

(6.6) IIIRk vI~llak < Ch7'(4m + I)- /4 "Ivll k Vv e Vk and / e R. 

Proof. Let A < A2 < < )nk be the eigenvalues of Ak and vl lV2 . kn 

be the corresponding eigenvectors such that (Vi, Vj)k = Jij Recall that Ank < 

Ak < Chk (cf. (4.6)). Let v = Znk1 aeiv. Then 

k - k 1~R~v = ~1 (i - nk A m 

Rk V = La'i (1 - ) Vil 

From the definition of the mesh-dependent norms (5.1), we have 

12-nk A2)2m k( - )) Q2)l/2/2 

k ~ i~ [( k ) k) i= 1 

_ nksup [(1-x)2 xl/2] 2>f 1)/2 

kO<x< I= 

? Ch -2(4m + 1)Y' /2 12IIVIIk2 E 

Lemma 11 (Approximation property I). There exists a positive constant C such 
that 

(6.7) |||I-I(,_ k k 
v-ll < Chkll11 i 

Proof. By Proposition 3, it suffices to show that 

(6.8) JJ(I -i IlPkI )VII(L2(Q))2 ? ChJIIV1112,k VV e Vk. 

The proof of (6.8) is based on a duality argument. Given v e Vk, let v = 
k k-i 2 1 

(I -I pk 1 )v and let (r, p) e ((H (Q))2 n (H2(Q)) ) x (H (Q)/IR) solve the 
continuous problem 

-Ar+grad5=v inQ, 

(6.9) divr=O inQ, 
r=O onOQ. 
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Elliptic regularity (cf. (1.2)) implies that 

(6.10) 1rIl(H 2(2))2 + I ?H'(Q) < CIIVII( 2(fj))2. 
Let rk e Vk and rk-l e Vk-1 solve 

(1ak(rk, w) = V.wdx Vwe-Vk, 

ak-l(rk-1 w) = v.wdx VwEVk-i' 

respectively. The discretization error estimate ( 1.10), elliptic regularity estimate 
(6.10), and the fact that hk-l = 2hk imply that 

||r1-rk||k < Chk11i11(L2(n))2, 

(6.12) |r - rk-lIlk-1 < Chk11vh(L2(!))2. 

Denote P 'v by z. (Therefore, v = v - k_ *) We have 

IIVII(L2(Q))2 = {(, )(L2))2 - TE[ | V(v- z)dx} 
(6.13) TEgk 

+ I r VrV(v-z)dx. 
TE5k 

Since z E Vk by using the definitions of rk , rk l, ak( ,),and ak I(',) 
we can rewrite the first term on the right-hand side of (6.13) as follows: 

(,v(L 2(n))2 - E | Vr .V(v -z) dx 
T 

IT 

= (v, v-I k-z)(L2(n))2- T I Vr Vvdx 
TE9_k 

(6.14) + fVr Vzdx 
TE7k-I 

k 
ak (rk, V) (V Ik1 Z)(L2(n))2 - ak (r, v) + ak-1 (r, z) 

= ak(rk - r, v)-(, z)(L2())2 + (v, z -_ 4z)(L2(,))2 + ak-(r z) 

= ak(rk - r, v) + ak-l(r - rk-l, z) + (v, Z - I-I Z)(L2(n))2. 

Using the Cauchy-Schwarz inequality, (6.12), the definition of z, Lemma 8, 
and (1. 13), we have 

(,)(L 2(n))2 
- JVr* .V(v - z) dx 

TEg-k 

(6.15) < 
Ijrk rhlklvhlk 

+ 
hjrrkll-kr 

l Pk 
Vlkl1 

+ ||V||l(L2(n))2 lZ - Iki Zl(L2(j))2 

< Chk hivrlL 2(n))2hlvhlk. 



A NONCONFORMING MULTIGRID METHOD 433 

k 
By using the definitions of ak(, *), akl(, *), z, and Pk1- 1, the remaining 

term on the right-hand side of (6.13) can be rewritten as follows: 

E fTVr * V(v - z) dx = ak(r ,v) - ak-l (r ,z) 

- ak(r -Hkr, V) + ak(Hkr -Iklk lr, v) 
(6.16) + ak(I lflklr, v) - akl(r, z) 

- ak(r -Hkr, V) + ak(Hkr - Ik 1kr, V) 

+ak l(Hk1r-r, P v)+ 
The interpolation error estimate (2.13), (1.14), (6.2), and (6.10) imply that 

(6.17) E |Vr - V(v-Sz) dx < 
Chklrl(H2(.))2 IIVIIk (6.17) 

~TEgfk 

< ChkI||V||(L 2 ())2 IIVIlk @ 

Inequality (6.8) now follows from (6.13), (6.15), and (6.17). a 

Corollary 2 (Approximation property II). There exists a positive constant C 
such that 

(6.18) III( _ k k-1 < Ch k 

Proof. From (6.1), (5.2), and Lemma 1, we have 

k k - i _ _ _ _ _ _ _ __lak _ k_ _ _ _ _ _ _ _ _ 

k' kk-1 i )supk Ik((J - 41P~'v ) 

sp ak(V, (I-<IIP' 
)W) I 

WEJ'k\{O} I IIWIII 2,k 
k kli 

< 
sup 

11V113,kIII0(I 

- k-lPk 
)WIII ,k -WEVk\{0jII W 1lwl2, k 

< ChkIIIvIII3k.\ IIa 

Corollary 3. There exists a positive constant C such that 

(6.19) 111P' VIIIlk < CIIVIIiIlk VVE J/k. 

Proof. By Proposition 3, (6.7), (1.13), and (6.2), we have 

k k- k- 
p k - 1 111 I I I k 

k-ik 
l k V I I 

l 
ll k 

+ IIIIk-lPk V-Vllll ,k + IIIIIII ,k 

< IIPK v- IkP> VII(L2())2 + ChkIIVIIk + IIIVII1 ,k 

< Chk |k |k-1 + Chk lik+1lll1ll < ChkIvK VIIkl + 
kIIVIIk + IIIVIIIIk 

< Chk IIVIIk + IIIVIIII k' 
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On the other hand, from the definition of III lll, k and the fact that the 

spectral radius of Ak is bounded by Chj-4 (cf. (4.6)), we have hkllvllk ? 

CIIIVIIIlk forall ve( Vk. a 

Theorem 3 (Convergence of the two-grid algorithm). There exists a positive con- 
stant C such that 

(6.20) Ilellk < CM lOlk 

and 

(6.21) Ilell L2(n))2 
< Cm` /4 Ile I(2(0,)2. 

Therefore, the two-grid algorithm is a contraction if m is large enough. 

Proof. By (6.5), (6.18), and (6.6) with fi = 3, we have 
k k-i Rme 

Ilellk = ||( I-_k-1 Pk )Rk eOllk 

< ChklllRmeolll3 k < Cm 1/4 IleOlik. 

By (6.5), (6.8), and (6.6) with fi = 2, we have 

(6.22) Ilell(L2(2))2 = (IJ - k-1k 

1 
)Rk eOll(L2(2))2 

< Ch||R eoil <C /4 Illeoll 

Inequality (6.21) now follows from (6.22) by Proposition 3. a 
Theorem 4 (Convergence of the kth-level iteration). There exists a positive con- 
stant C such that when the kth-level iteration is applied to AkZ = g, we have 

(6.23) lIz - MG(k, zo, g)Ilk < Cm l -ZOlik 

and 

(6.24) liz - MG(k, zo, g)ll(L2())2 Cm lIz - Zoll(L2(2))2 

provided that m is large enough. 
Proof. Let C* be a positive constant which dominates all of the constants in 
(1.12), (3.16), (6.2), (6.19), (6.20), and (6.22). Assume that m satisfies 

(6.25) (2C*/ml/4)P-I < (2C*2)-1 

and let y = 2C*/ml/4. (Recall that p = 2 or 3 in the algorithm.) We shall 
prove the following inequalities by induction: 

(6.26) lIz - MG(k, zo, g)lIk < YIIZ - ZOIlk 

and 

(6.27) lIz - MG(k, zo, g)||(L2(Q))2 < yI|IZ - ZoIIII ,k 

Note that (6.24) follows from (6.27) by Proposition 3. 
For k = 1, (6.26) and (6.27) hold because MG(1, zo, g) = AI'g = z. 

Assume that (6.26) and (6.27) hold for k < n - 1. 
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Let e= Z - Zi, 0 < i < m. Then em = Re .We have 

(6.28) z-MG(n, zo, g) = z-(z + In1qp) 

Z(m+ In-lq) + In-l(q qp)' 

where q = Pn lem (cf. Lemma 9) satisfies An- q = j and qP is the approx- 
imation of q obtained by applying the (n - 1)-level iteration p times. From 
(1.12), the induction hypothesis, Lemma 8, and (6.24), it follows that 

(6.29) IIn-l(q- qp)lln < C*Y lIqllnIl = C*/|Pn emIln-l 

< (C yP||n eOlln < 211 lln' 

Since z - (Zm + I"_ q) is the final error of the two-grid algorithm, it follows 
from (6.20) and the choice of y that 

(6.30) lIz - (Zm + In-q) < C*m1 /4Ileon = lleolln. 

Combining (6.28), (6.29), and (6.30), we see that (6.26) holds for k = n. 
On the other hand, by (3.16), (6.19), and the induction hypothesis, we have 

IIn- I(q - qp)ll(L2(Q))2 < C Y llqllllsk-i = C2' yIIPemlik-1 

(6.31) < (C*)2yp IlllReollllk 

< (C )Y | 0111||,k 
< 

Yllleollllsk' 

It also follows from (6.22) and the choice of y that 

(6.32) liz- (Zm +Inl q)I(L2(n))2 < C*m 1/4 < IIIleOIIIe k In-1q)II(L 011lll 1lll,k < Yle lllk 
Therefore, (6.27) holds for k = n by combining (6.28), (6.31), and (6.32). a 

Theorem 5 (Full multigrid convergence). If m is chosen so that the kth-level 
iteration is a contraction for k = 1, 2, ... and the parameter r in the full 
multigrid algorithm is chosen large enough, then 

(6.33) IlUk - Ukll(L2(n))2 + hk IlUk - Uk Ilk 

)< Chk(IUI(Hu())2 + lPIH'(U)) for k> 1 

where (u, p) is the solution of ( 1.1), Uk is the exact solution of the discretized 
problem (1.9), and Uk is the approximate solution of (1.9) obtained from the 
full multigrid algorithm. 

Proof. It suffices to prove that 

(6.34) Iluk - klUk-1 I(L2())2 +hklluk -Ik1Uk- Ilk 

< Ch 2lu 2 ,0)2 +ll'~ <Ck (I UI (H2Q) + IP I H1(Q) ) 

Theorem 4 and a standard argument (cf. [14, Theorem 7.1, p. 162]) will then 
prove (6.33). 
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The discretization error estimate (1.10), the interpolation error estimate 
(2.13), properties (1. 12), (1.14), and (3.16) imply that 

IlUk - Ik- Uk- II (L2(Q))2 + hkllUk- Ik 1Uk-1Ilk 

< IlUk - HkUII(L2 (Q))2 + hkllUk - HkUIlk) 

+ (IIrkU - Ik1(Hk IU)II(L2(L)2 + hkllflkU -Ik-l(Hk-lU)Ilk) 

+ (IkIl(Hklu-ukl)I(L2(2))2 + hkIIIk i(nk 1U Ukl)Ilk) 

< Ch U(IUI 2(Q2 + IPIH1(Q)) 

+ C(liIklu - Uk-1II(L2(Q))2 +hkIIrk- 1U - Uk- lk) 

< Chk(IUI(H2(2 + IPIH1(Q)) a 
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